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The hot topic among medicinal chemists today is a novel technique for chemical syn-
thesis in drug research called combinatorial chemistry, where usually a core structure and
some building-block molecules are given and all combinatorially possible combinations are
produced. The resulting set of compounds (called a library) can afterwards be systemati-
cally screened for a desired biological activity. In this paper we discuss the applications of
the mathematical discipline of combinatorics to this process, especially an algorithm for the
exhaustive and redundancy-free generation of a combinatorial library as well as equations
for the enumeration of library sizes.

1. Introduction

With the upcoming of new analysis automata, it became possible to examine
several thousands of compounds a day for their biological activity. Together with
the necessity of cost reduction in industrial research, this high-throughput screening
has raised the desire for making very large numbers of novel molecules available. In
the recent years a new technique is used for this purpose: combinatorial chemistry
[6,12,13,32,35]. It does not aim at the classical objective of synthesizing one substance
as pure as possible, but it deliberately utilizes the structural variety to produce a large
number of compounds simultaneously.

Typically a set of building-blocks is taken that is systematically combined with a
core structure in all combinatorially possible ways where the actual reations make use
of chemical, biological or biosynthetical procedures. The set of all resulting molecules
is called a combinatorial library.

Despite the high-throughput capacities, it is still reasonable to keep the sizes of
the libraries small – especially to avoid one pharmacological class being tested over
and over again. So in the preparation of combinatorial chemistry experiments, math-
ematical modelling is essential [23,25], and mathematical combinatorics can provide
it.

In this paper we want to discuss an algorithm for the generation of combinatorial
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libraries which is exhaustive (i.e., it must generate all molecules corresponding to
the given data) and redundancy-free (i.e., no molecules should occur twice). It can
be compared with isomer generators [3,4,7,8,11,18,24,36], i.e., computer programs
capable of calculating all possible isomers to a given empirical formula and further
optional conditions, but is different in the task since here usually blocks cannot be
attached by simply adding an edge.

We will also present general formulae to compute the sizes of combinatorial
libraries, following the tradition of Cayley [9], Redfield [29] and Pólya [26,27] who
already emphasized the benefits of combinatorial enumeration in chemistry.

2. Basic definitions

In this paper we consider graphs as labeled multi-graphs, i.e., as mappings

γ :p[2] → {0, . . . ,m− 1}, in short γ ∈ mp[2]
,

where p[2] is the set of all 2-subsets of p := {1, . . . , p}, if the graph has p vertices,
γ({i, j}) = k if there is an edge of degree k between the vertices i and j, and
γ({i, j}) = 0 if the two vertices are not connected.

For molecules we take the usual model dating back to Crum Brown (cf. [5]),
identifying atoms as vertices and bonds as edges. The atomic types are defined by an
additional mapping β : p→ {E1,E2, . . .} with the Ei representing chemical elements,
such that a molecular graph is a pair (γ,β) of a graph and a coloring of the vertices
with atomic types.

Furthermore, we call

η ∈ mT [2]
with T ⊆ p, ∀i, j ∈ T : η({i, j}) = γ({i, j}),

a subgraph of γ, denoted by η ⊆ γ.

3. Group actions and orderly generation

We will introduce some basic definitions and notations from algebra which will
be needed furtheron (for more details, see, e.g., [17]).

Definition 1. Let G be a group, and Ω a non-empty set. A mapping

G×Ω→ Ω, (g,ω) 7→ gω

with g′(gω) = (g′g)ω ∀g, g′ ∈ G, ∀ω ∈ Ω and 1ω = ω is called an action of G on Ω,
abbreviated by GΩ.

A group action is called finite if both the group and the set are finite. In this
paper we will only use finite actions.

Group actions give rise to several important sets:
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Definition 2. Let G be a group acting finitely on Ω, ω ∈ Ω and ∆ ⊆ Ω.

• G(ω) := {gω | g ∈ G} is called orbit of ω.

• G\\Ω := {G(ω) | ω ∈ Ω} is called set of orbits.

• T (G\\Ω) is called transversal of the orbits with Ω =
⋃̇
t∈T G(t), derived from the

equivalence class property of the orbits.

• Ωg := {ω ∈ Ω | gω = ω} is called the set of fixed points of g.

• CG(∆) := {g ∈ G | gδ = δ ∀δ ∈ ∆} is called centralizer or pointwise stabilizer of
∆ in G.

• NG(∆) := {g ∈ G | gδ ∈ ∆ ∀δ ∈ ∆} is called normalizer or setwise stabilizer of ∆
in G.

Let X and Y denote two finite non-empty sets. Then we set Y X := {f | f :X →
Y }. If G acts on X, then G also acts on Y X as

G× Y X → Y X , (g, f ) 7→ f ◦ g−1.

Typical sets for X and Y are sets of natural numbers like n := {1, 2, . . . ,n}.
The type of group which we will use only is the symmetric group Sn := {π ∈

nn | π bijective} and its subgroups, which we call permutation groups.
In the context of graphs, automorphism groups are important structures, since a

group action on the points induces an action on the pairs of points:

Definition 3. The stabilizer of a labeled multi-graph γ ∈ mp[2]
is called automorphism

group of γ:

Aut(γ) := CSp(γ) = {π ∈ Sp | πγ = γ}.

For molecular graphs (γ,β), we set Aut(γ,β) := CSp(γ,β).

We will now consider a subgraph η ⊆ γ, as defined above. The automorphisms
π ∈ A := Aut(γ) that keep η fixed certainly hold: π ∈ NA(η). There may be some
π,π′ ∈ NA(η) ⊆ A with π ↓ η = π′ ↓ η, but π 6= π′. So to obtain the automorphisms
of the subgraph we have to consider cosets after the centralizer of η. This yields:

Proposition 4. The automorphisms of a subgraph η ⊆ γ in a graph γ with automor-
phism group A induce on η a group isomorphic to NA(η)/CA(η).

Proof. The embedding of NA(η) in Aut(η) has the kernel CA(η) such that the ho-
morphism theorem immediately yields the assertion. �

For constructing transversals of orbits, the naive approach is to compare any
new element with all previously calculated; but this is completely inappropriate for
practical use. A helpful principle is the concept of orderly generation, a method that
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was introduced by R.C. Read [28] and that can be refined considerably [15–17,22,33].
It is based on the fact that total orders on X and Y induce a canonic total order on
Y X , the lexicographic order, so that a canonic transversal

T>
(
G\\Y X

)
,

consisting of the biggest elements of the orbits, does exist.

Theorem 5 ([17,22,28]). Let GΩ be a finite group action where Ω is assumed to be
totally ordered by 6 and to possess a disjoint decomposition

Ω =

n⋃
i=1

Ωi

in invariant and non-empty subsets Ωi. Let A be an algorithm that produces for
each ω ∈ Ω either the empty set or a set A(ω) ⊆ Ω in descending order such that
the following conditions hold for the canonic transversals T (i)

> of G\\Ωi for all i ∈
{1, . . . ,n− 1}:
•

T (i+1)
> ⊆

⋃
ω∈T (i)

>

A(ω).

• For all ω1,ω2 ∈ T (i+1)
> with ω1 < ω2 we have that ω1 ∈ A(ω′1) and ω2 ∈ A(ω′2)

implies ω′1 < ω′2.

Then the desired transversal of G\\Ω can be obtained by proceeding as follows:

1. Determine T (1)
> and set T> ← T (1)

> .

2. For i ∈ {1, . . . ,n − 1} determine all A(ω(i)) for ω(i) ∈ T (i)
> , calculate T (i+1)

> by
unifying the A(ω(i)) and eliminating all non-canonic elements and set

T> ← T> ∪ T (i+1)
> .

Proof. Clear. �

The decisive result that can be derived from the general form reads:

Proposition 6. Let f ∈ T>(G\\Y X) and f1 ∈ Y X be a starting piece of f , i.e., there
exists a t 6 n with

f1(j) =

{
f (j), for j < t,
0, for j > t.

Then f1 ∈ T>(G\\Y X).
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Proof. We perform an indirect proof and assume that f1 /∈ T>(G\\Y X). Then a
π ∈ G exists with πf1 > f1, i.e., there is also t̃ < n, such that

πf1(j) = f1(j) for j < t̃ and πf1(t̃) > f1(t̃).

We have t̃ < t, since otherweise due to f1(j) = 0 for j > t also πf1 could not become
larger than f1 under the permutation π.

We differentiate after the impact of π:

1. π exchanges the places k < t̃ and k′ > t̃ (i.e., π−1(k) = k′) with f1(k) = f1(k′) =
0, where f (k′) > 0. (If there are more than one pair (k, k′), we choose the one
with the smallest k.) According to our assumption we get πf (j) = πf1(j) =
f1(j) = f (j) for j < k and f (k) = f1(k) = πf1(k) = 0, but πf (k) = f (k′) > 0,
leading to f (k) < πf (k). This means f < πf , in contradiction to the assumed
maximality of f .

2. In all other cases we have πf (j) = f (j) ∀j < t̃ and πf (t̃) = πf1(t̃) > f1(t̃) = f (t̃),
which is again in contradiction to the maximality of f .

�

This proposition tells us how to use orderly generation algorithmically: it is
sufficient to expand starting pieces lexicographically without having to re-test them
on maximality. This means in the opposite that, if the starting piece is already not
canonic, it cannot become a canonic representative by filling the remaining places.
(For more details see [16,22,33].)

4. Reaction schemes

We would like to start the presentation of our method for library generation
with a syntax to describe the underlying chemical reactions formally, especially the
two-component synthesis like

A + B→ C.

In most cases, subgraphs determine the course of the reaction.

Definition 7. Let (η1,β1) and (η2,β2) with η1 ∈ mr
[2]

and η2 ∈ ms
[2]

be molecular
graphs. A reaction scheme is defined as the triple(

(η1,β1), (η2,β2), ρ
)
,

where ρ :p× q → Z ∪ {−∞} is a mapping with

ρ(i, j) =

k, i and j are to be connected by a bond of degree k,
0, i and j remain unconnected,
−∞, one of the atoms i or j is dropped.
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By means of this definition1 many two component reactions can be described
sufficiently. In fact, our main interest in such a reaction lies in the changes of the
graphs, and not in the experimental aspects (like reaction conditions, catalysts or
equilibria).

A corresponding algorithm could be formulated to link two graphs by a reaction
scheme over all reacting subgraphs. As we will not explicitly need such a procedure
for library generation, we omit a deeper discussion and just present an example:

Example 1. Peptids are protein molecules built from at least two amino acids which
play a central role in biochemistry. The joining of the single amino acids is performed
by condensation of the acid group (COOH) and the amid group (NH2). Thus the
decisive reaction structure is the α amino acid group, which must be contained in both
reaction partners:

The condensation is represented by the mapping

ρ =


0 0 0 0 0
0 0 1 0 0
0 0 0 0 0
0 0 0 0 0
−∞−∞−∞−∞−∞

 .

We consider the amino acids

and

Obviously both contain the subgraph η1. Despite the equality of the subgraphs in the
reaction scheme, the order of the initial graphs is essential. Taking alanine as the first
one, say, we obtain

1 This definition is a simplification of the situation and is only used for a formalization of the construction
problem discussed below. For more sophisticated purposes more comprehensive approaches like the
algebra of be- & r-matrices [10] are necessary.



T. Wieland / Combinatorics of combinatorial chemistry 147

5. Multiple attachments to a core structure

The evolvement of a combinatorial library includes a special type of reaction
scheme that is given by a core structure with several reaction sites and a number of
ligand compounds.

Let ((η1,χ1), (η2,χ2), ρ) denote a reaction scheme, (γ,β) a molecular graph
containing k substructures isomorphic to (η1,χ1) with k > 1, and a set of molecu-
lar graphs (γ1,β1), . . . , (γn,βn); for sake of simplicity we assume that each contains
exactly one substructure isomorphic to (η2,χ2).

The first task is to determine all attachments of the ligands to the sites of the
core, where the sites are given by the substructures of the reaction scheme. For k = 4,
e.g., the situation is:

Topological equivalence of the atoms is expressed by the automorphism group
Aut(γ,β). The permutation group Pγ 6 Sk of the sites can be derived according
to proposition 4 as an induced subgraph automorphism group of the subgraph which
is determined by the first vertex of each ζi (see algorithm 9). So Pγ acts on the sites
k which we want to assign with n different ligands. These arguments lead to:

Lemma 8. The essentially different possibilities to attach n ligand structures, which
contain the corresponding subgraph of the given reaction scheme exactly once, to the
k different reaction sites of a core structure (γ,β) correspond to a transversal of the
action of Pγ on nk:

T
(
Pγ\\nk

)
.

So now we can state a strategy:

Algorithm 9 (Attachment of ligands to a core structure).

1. Determine the group Pγ as well as all subgraphs ζ1, . . . , ζk ⊆ γ which are iso-
morphic to η1.

2. Compute for i ∈ n the subgraphs ζ (i) ⊆ γi which are isomorphic to η2.

3. Use orderly generation to obtain the next representative f ∈ nk under the action
of Pγ .
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4. Determine the total graph which yields from the attachment of the ligands
γf (1), . . . , γf (k) to γ according to ρ, i.e., by combining the graphs, eliminating
vertices which have to be dropped and adding the necessary edges.

5. If there are further orbit representatives, go to step 3.

Due to orderly generation in step 3 and the uniqueness of the subgraphs of the
ligands our requirements of exhaustiveness and irredundancy are fulfilled.

6. Generation of libraries

For the generation of a combinatorial library from given building-blocks algo-
rithm 9 is perfectly suited, since the basic situation of combinatorial chemistry as
described in section 1 is just that of this method.2

For practical use it is moreover relevant that the multiplicity of a certain building-
block can be restricted, i.e., that a (γi,βi) occurs in all compounds of the library at
least u and at most v times. This can be reached by an additional test in algorithm 9
between step 3 and step 4. In laboratory, this restriction can be statisfied by an
appropriate modification of the reaction conditions.

As an example we consider the combinatorial libraries from [6]. The authors used
as building-blocks the twenty natural amino acids (cf. figure 1) and as core structures
some acid chlorides:

a cubane-derivative (structure I), xanthene (II) and a benzene triacid chloride (III).
The reaction scheme consists of the substructures

and the matrix

ρ =

 0 0 1 0 0
0 0 0 0 0
−∞−∞−∞−∞−∞

 .

2 We assume that each building-block is admissible for each site. In the other case additional rules must
be formulated.
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Figure 1. The 20 natural amino acids.

The cubane-derivative I is the structure with the highest symmetry, i.e., the largest
automorphism group (derived from the symmetry group of the cube without inver-
sions), which has 24 elements. Since each automorphism comprises a movement of
the reacting substructures, we have |Pγ | = 24, too. As there are just four sites, it turns
out that Pγ = S4.
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The xanthene II has an automorphism group with four elements. Two of them
include the exchange of the methylene groups on the carbon bridge atom, such that
just |Pγ | = 2. Besides the identity, this is the reflection of the rings on the vertical
symmetry axis.

The benzene triacid chloride III has cyclic symmetry. Thus Pγ equals the cyclic
group C3, having three elements.

Even though the symmetry situation is a little complicated just for one of the three
cores, the advantages of the mathematical concept behind algorithm 9 are obvious. The
general Ansatz with an arbitrary permutation group and the efficient orderly generation
(cf. [16,22,33]) allows a very rapid generation of the combinatorial libraries in all three
cases. The computing speed is about 40 structures per second on a Pentium 90 MHz
PC, writing all solutions to the hard disk.

Details about the sizes of the libraries are given in section 7 where we want to
enumerate them.

Figure 2 shows six molecules from each of the three libraries.3

7. Enumeration of libaries

In this section we will present methods for the enumeration of the sizes of combi-
natorial libraries. A key tool for enumeration in algebraic combinatorics is the lemma
of Cauchy–Frobenius:

Proposition 10 (Lemma of Cauchy–Frobenius). Let G be a finite permutation group
acting on a finite set X.

• The number of orbits of this action is

|G\\X| = 1
|G|

∑
g∈G
|Xg|.

• G also acts on Y X if Y denotes another finite set. For the number of orbits the
following equation holds: ∣∣G\\Y X

∣∣ =
1
|G|

∑
g∈G
|Y |c(g),

where c(g) is the number of cycles of the permutation g.

Proof. See, e.g., [17]. �

3 The 2D placements were automatically calculated by the drawing module of MOLGEN [3,14,36].
These pictures reveal the current inacurracies of the employed placement algorithm [3,30] for combi-
natorial libraries.
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Figure 2. Extracts from the combinatorial libraries produced from the structures I, II and III and the
natural amino acides from figure 1.
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As we saw in lemma 8, the attachment of building-blocks to a core structure can
be represented by a group action. So we can immediately state a result on the size of
such libraries:

Theorem 11. Let (γ,β) be a core structure with k different reaction sites. Its au-
tomorphism group Aut(γ,β) may induce a permutation group Pγ 6 Sk among the
sites.

Furthermore a set of n different building-blocks may be given. Then the com-
binatorial library which can be built from the core structure and the building-blocks
according to a corresponding reaction scheme has∣∣Pγ\\nk∣∣ =

1
|Pγ |

∑
π∈Pγ

nc(π)

elements.

Example 2. Again we consider the example from section 6 (taken from [6]) with the
cores I, II and III and the amino acids (see figure 1) as building-blocks.

• The group Pγ for the cubane derivative (I) is the symmetric group S4 with 24
elements and k = 4. Then we get by theorem 11∣∣Pγ\\n4

∣∣ =
1

24

(
n4 + 6n3 + 11n2 + 6n

)
.

• For xanthene (structure II), we have k = 4 and Pγ = {1, (12)(34)}. Here our
formula yields ∣∣Pγ\\n4

∣∣ =
1
2

(
n4 + n2).

• In case of the benzene triacid chloride (III) there is k = 3 and Pγ = {1, (123),
(132)}. So the equation reads∣∣Pγ\\n3

∣∣ =
1
3

(
n3 + 2n

)
.

Table 1 provides an overview over the sizes of libraries depending on the number
of building-blocks used.

Although there are equally many sites in I and II, the libraries with the first one
are considerably smaller due to the higher symmetry of the core.

A combinatorial enumeration can also be obtained, if not all building-blocks shall
be allowed for all possible multiplicities, i.e., if the frequencies shall be restricted. The
tool for this task is called weighted enumeration (cf. [17], also for proofs).
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Table 1
Size of libraries depending on numbers of building-blocks.

n I II III

1 1 1 1
2 5 10 4
3 15 45 11
4 35 136 24
5 70 325 45
6 126 666 76
7 210 1225 119
8 330 2080 176
9 495 3321 249

10 715 5050 340
11 1001 7381 451
12 1365 10440 584
13 1820 14365 741
14 2380 19306 924
15 3060 25425 1135
16 3876 32896 1376
17 4845 41905 1649
18 5985 52650 1956
19 7315 65341 2299
20 8855 80200 2680

Proposition 12. 1. Weighted form of the Cauchy–Frobenius lemma: let GX be a
finite group action and W :X → R a weight function. If W is constant on the
orbits of G on X, then for any transversal T of the orbits we have

∑
t∈T

W (t) =
1
|G|

∑
g∈G

∑
x∈X

W (x).

2. Let w :Y X → R, f 7→
∏
x∈XW (f (x)) denote the multiplicative weight for the

weight function W :Y → R. Then w is constant on the orbits of the permutation
group G on Y X and for any transversal T of the orbits we have

∑
t∈T

w(t) =
1
|G|

∑
g∈G

|X|∏
i=1

(∑
y∈Y

W (y)i
)ai(g)

,

where ai(g) denotes the number of cycles of length i in the permutation g.

3. Let c(f , ) :Y → N, y 7→ |f−1({y})| be the content of the mapping f ∈ Y X , i.e.,
c(f , y) denotes how often f takes the value y. Then the number of G-orbits on
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Y X , the elements of which have the same content as f ∈ Y X , is equal to the
coefficient of the monomial

∏
y y

c(f ,y) in the polynomial

1
|G|

∑
g∈G

|X|∏
i=1

(∑
y∈Y

yi
)ai(g)

.

Applied to combinatorial libraries we obtain:

Theorem 13. Let (γ,β) be a core structure with k different reaction sites. Its au-
tomorphism group Aut(γ,β) may induce a permutation group Pγ 6 Sk among the
sites.

Furthermore a set of n different building-blocks and a distribution f ∈ nk of the
blocks may be given.

Then the number of elements of the library, the distributions of which have the
same content c(f , ) as f , is equal to the coefficient of the monom

∏
r y

c(f ,yr)
r in the

polynomial

1
|Pγ |

∑
π∈Pγ

k∏
i=1

( n∑
r=1

y ir

)ai(π)

over the unknowns y1, . . . , yn.

Example 3. As above, we consider the example from section 6 (taken from [6]) with
the core structures I, II and III and the amino acids as building-blocks.

Then theorem 13 yields the following relations:

• The cubane derivative (I) has Pγ = S4. We differentiate its elements according to
their cycle type a(π) = (a1(π), . . . , a4(π)):

1 element of type (4, 0, 0, 0), e.g., (1)(2)(3)(4);
6 elements of type (2, 1, 0, 0), e.g., (12)(3)(4);
3 elements of type (0, 2, 0, 0), e.g., (12)(34);
8 elements of type (1, 0, 1, 0), e.g., (123)(4);
6 elements of type (0, 0, 0, 1), e.g., (1234).

So the polynomial is

1
24

(
(y1 + · · ·+ yn)4 + 6(y1 + · · ·+ yn)2(y2

1 + · · ·+ y2
n

)
+ 3
(
y2

1 + · · · + y2
n

)2
+ 8(y1 + · · ·+ yn)

(
y3

1 + · · ·+ y3
n

)
+ 6
(
y4

1 + · · · + y4
n

))
.

If we have four building-blocks, say, this term becomes

y4
1 + y4

2 + y4
3 + y2y

2
3y4 + y2

1y2y3 + y1y
2
2y3 + y1y2y

2
3 + y3

1y2 + y3
1y3
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+ y2
1y

2
2 + y2

1y
2
3 + y1y

3
2 + y1y

3
3 + y3

2y3 + y2
2y

2
3 + y2y

3
3 + y1y

2
2y4 + y2

1y2y4

+ y2
1y3y4 + y2

2y3y4 + y1y2y
2
4 + y1y

2
3y4 + y1y3y

2
4 + y2y3y

2
4 + y4

4 + y3
1y4

+ y2
1y

2
4 + y1y

3
4 + y3

2y4 + y2
2y

2
4 + y2y

3
4 + y3

3y4 + y2
3y

2
4 + y3y

3
4 + y1y2y3y4.

• For xanthene (II) we obtain the polynomial

1
2

(
(y1 + . . .+ yn)4 +

(
y 2

1 + . . .+ y 2
n

)2)
.

In the case n = 4, this expands to the sum

6y1y
2
2y4 + 6y1y2y

2
4 + 6y1y

2
2y3 + y4

1 + y4
2 + y4

3 + y4
4 + 6y1y

2
3y4 + 6y2

1y2y3

+ 6y2
1y2y4 + 6y2

1y3y4 + 6y2
2y3y4 + 2y1y

3
2 + 2y1y

3
3 + 2y1y

3
4 + 2y3

1y2

+ 2y3
1y3 + 2y3

1y4 + 4y2
1y

2
2 + 4y2

1y
2
3 + 4y2

1y
2
4 + 2y2y

3
3 + 2y2y

3
4 + 2y3

2y3

+ 2y3
2y4 + 4y2

2y
2
3 + 4y2

2y
2
4 + 2y3y

3
4 + 2y3

3y4 + 4y2
3y

2
4 + 6y1y2y

2
3 + 6y1y3y

2
4

+ 12y1y2y3y4 + 6y2y
2
3y4 + 6y2y3y

2
4 .

The condition that, for instance, only those library elements are of interest which
contain the first building-block exactly once corresponds to the summands

6y1y
2
2y4 + 6y1y2y

2
4 + 6y1y

2
2y3 + 6y1y

2
3y4 + 2y1y

3
2

+ 2y1y
3
3 + 2y1y

3
4 + 6y1y2y

2
3 + 6y1y3y

2
4 + 12y1y2y3y4.

So there are 6 + 6 + 6 + 6 + 2 + 2 + 2 + 6 + 6 + 12 = 54 elements of that kind.

• For the benzene triacid chloride (III) the polynomial is

1
3

(
(y1 + . . . + yn)3 + 2

(
y3

1 + . . .+ y3
n

))
.

Considering three building-blocks, say, this means

y3
1 + y2

1y2 + y2
1y3 + y1y

2
2 + 2y1y2y3 + y1y

2
3 + y3

2 + y2
2y3 + y2y

2
3 + y3

3.

8. Conclusion

The methods and theorems presented above provide a number of tools for the
analysis of combinatorial libraries. They should enable the researcher to understand and
overview his libraries better and eventually to design his experiments more precisely.
In combination with procedures for building-block selection [23,31] combinatorics will
thus allow a deeper insight into the chemical and biological reactions. The following
and last step in combinatorial chemistry, the screening of the library, is, however, a
much more difficult task, but mathematical models (e.g., QSAR correlations [1,2,19,
20,34] or CoFMA [20,21]) are already in sight.
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